

AQA Computer Science A-Level
4.4.2 Regular languages

Advanced Notes

www.pmt.education

Specification:

4.4.2.1 Finite state machines (FSMs) with and without output

Be able to draw and interpret simple state transition diagrams and
state transition tables for FSMs with no output and with output (Mealy
machines only).

4.4.2.2 Maths for regular expressions

Be familiar with the concept of a set and the following notations for
specifying a set: A = {1, 2, 3, 4, 5 } or set comprehension: A = {x | x ∈ ℕ ∧
x ≥ 1 } where A is the set consisting of those objects x such that x ∈ ℕ and
x ≥ 1 is true.

Know that the empty set, {}, is the set with no elements.
Know that an alternative symbol for the empty set is Ø.
A set is an unordered collection of values in which each value occurs

at most once.
Several languages support set construction. In Python, for example,

use of curly braces constructs a set: {1, 2, 3 }. | means such that. x ∈ ℕ
means that x is a member of the set ℕ consisting of the natural numbers, ie
{0, 1, 2, 3, 4, … }.

The symbol ∧ means AND. The term ∧ x > = 1 means AND x is
greater than or equal to 1. In Python, {2 ∗ x for x in {1, 2, 3 }} constructs {2,
4, 6 }. This is said to be a set comprehension over the set {1, 2, 3 } .

Be familiar with the compact representation of a set, for example, the
set {0n 1n | n ≥ 1}. This set contains all strings with an equal number of 0 s
and 1s. For example, {0n 1n | n ≥ 1} = {01, 0011, 000111, 00001111, … }

Be familiar with the concept of:
• finite sets
• infinite sets
• countably infinite sets
• cardinality of a finite set
• Cartesian product of sets.

www.pmt.education

A finite set is one whose elements can be counted off by natural
numbers up to a particular number, for example as: 1st element, 2nd
element, …, 20th (and final) element. The set of natural numbers, ℕ and the
set of real numbers, ℝ are examples of infinite sets.

A countably infinite set is one that can be counted off by the natural
numbers. The set of real numbers is not countable.

The cardinality of a finite set is the number of elements in a set.
Cartesian product of two sets, X and Y, written X x Y and read 'X

cross Y', is the set of all ordered pairs (a, b) where a is a member of A and
b is a member of B.

Be familiar with the meaning of the term:

• subset. {0, 1 , 2 } ⊆ {0, 1, 2, 3 } where ⊆ means subset of. ⊆
includes both ⊂ and =, for example {0, 1, 2, 3 } ⊆ {0, 1, 2, 3 } is also
true, because {0, 1, 2, 3 } = {0, 1, 2, 3 }.

• proper subset. {0, 1 , 2 } ⊂ ℕ where ⊂ means proper subset
of, that is ℕ contains everything in {0, 1, 2 } but there is at least one
element in ℕ that is not in {0, 1, 2 }.

• countable set. A countable set is a set with the same
cardinality (number of elements) as some subset of natural numbers.

Be familiar with the set operations:

• membership
• union
• intersection
• difference.

The set difference A\B (or alternatively A-B) is defined by A\B = {x : x
∈ A and x ∉ B}.

4.4.2.3 Regular expressions
Know that a regular expression is simply a way of describing a set

and that regular expressions allow particular types of languages to be

www.pmt.education

described in a convenient shorthand notation. For example, the regular
expression a(a|b)* generates the set of strings {a, aa, ab, aaa, aab, aba,
…}.

Be able to form and use simple regular expressions for string
manipulation and matching. Students should be familiar with the
metacharacters:

• * (0 or more repetitions)
• + (1 or more repetitions)
• ? (0 or 1 repetitions, ie optional)
• | (alternation, ie or)
• () to group regular expressions. Any other metacharacters

used in an exam question will be explained as part of the question.

Be able to describe the relationship between regular expressions and
FSMs. Regular expressions and FSMs are equivalent ways of defining a
regular language.

Be able to write a regular expression to recognise the same language
as a given FSM and vice versa. A student's ability to write very simple
regular expressions and FSMs will be assessed.

4.4.2.4 Regular language

Know that a language is called regular if it can be represented by a
regular expression. Also, a regular language is any language that a FSM
will accept.

www.pmt.education

Finite State Machines
Finite state machines ​ can have an output.

Here is a basic finite state machine.

Let’s add some inputs

www.pmt.education

If a 1 is inputted at S0, the state changes to S1. If a 0 is inputted at S1, the state
changes to S2 and so forth.
We could also add some outputs. These are separated from the inputs with a |.

An example input might be 1000101.

The start state (indicated by the arrow) is S​0​, and our first input is a 1.

State S​0

Input 1 0 0 0 1 0 1

Output

An “a” is outputted, and the state changes to S​1​.The next input is 0.

www.pmt.education

State S​0 S​1

Input 1 0 0 0 1 0 1

Output a

A “b” is outputted. The state changes from S1 to S2. The next input is 0.

State S​0 S​1 S​2

Input 1 0 0 0 1 0 1

Output a b

A “b” is outputted. The state stays as S2. The next input is 0.

State S​0 S​1 S​2 S​2

Input 1 0 0 0 1 0 1

Output a b b

www.pmt.education

A “b” is outputted. The state stays as S2. The next input is 1.

State S​0 S​1 S​2 S​2 S​2

Input 1 0 0 0 1 0 1

Output a b b b

An “a” is outputted. The state changes from S2 to S3. The next input is 0.

State S​0 S​1 S​2 S​2 S​2 S​3

Input 1 0 0 0 1 0 1

Output a b b b a

www.pmt.education

A “b” is outputted. The state stays as S3. The next input is 1.

State S​0 S​1 S​2 S​2 S​2 S​3 S​3

Input 1 0 0 0 1 0 1

Output a b b b a b

An “a” is outputted. The state stays as S3. There are no more inputs.

State S​0 S​1 S​2 S​2 S​2 S​3 S​3

Input 1 0 0 0 1 0 1

Output a b b b a b a

The input 1000101 has landed on a valid stop state and produced the output “abbbaba”.

www.pmt.education

Sets
A set is an abstract data type which contains unordered unique values. Many languages
support set construction, including Python. ​Sets can contain other sets​. Below are
examples of common set notation.

Set Example 1:
F is a set of farm animals. This is the notation for the set.

F: {“Pig”, “Goat”, “Cow”, “Sheep”}

Set Example 2:
H is a set of heights of 10 year old children. This is the notation for the set.

H: {143.1, 142.8, 145.0, 143.5}

Set Example 3:
A is the set of school subjects Charlie has on Monday.
A: {“Eng”, “Mat”, “MFL”}
B is the set of school subjects Charlie has on Wednesday.
B: {“Geo”, “Art”, “His”}
C is the set of school subjects Charlie has on Friday.
C: {“D.T”, “P.E.”, “Sci”}

D is the set of the subjects Charlie has on Monday, Wednesday and Friday.
D: {(“Eng”, “Mat”, “MFL”), (“Geo”, “Art”, “His”), (“D.T”, “P.E.”, “Sci”)}

Python Set Example 1:
Using curly brackets in Python constructs a set. E.g. to construct a set containing 1, 2
and 3, the following code would be implemented:

{1, 2, 3}

Set Comprehension
Set comprehension is a different way of creating a set; rather than specifying all of the
items individually, we can select what we want from a more general set. Below is the set
comprehension for all the positive integers (not including 0).

www.pmt.education

Set Comprehension Example 1 - Understanding:

What set would the following code produce?

S={x*3|x∈​ℤ ​∧ x≥-3 ∧ x<3}

The first thing to note is what general set the numbers are being drawn from.

S={x*3|​x∈​ℤ​ ​∧ x≥-3 ∧ x<3}

The values are being drawn from Z, which stands for the set of integers. This includes
all the positive and negative whole numbers and zero. Next, we look at the first
condition.

S={x*3|x∈​ℤ​ ​∧ ​x≥-3​ ∧ x<3}

We are only taking integers from Z which are greater than or equal to -3. In other words,
we are taking -3, -2, -1, 0, 1, 2, 3, 4… to infinity. Now we look at the second condition.

www.pmt.education

S={x*3|x∈​ℤ​ ​∧ x≥-3 ∧ ​x<3​}

This limitation means we are only taking integers below 3. By applying both of the
conditions, we can say we are only looking at the integers between -3 and 2; they are
-3, -2, -1, 0, 1 and 2. Finally, we look at the instructions for these numbers.

S={​x*3​|x∈​ℤ​ ​∧ x≥-3 ∧ x<3}

Each number specified should now be multiplied by 3, before being added to the set.
This will be the result.

S = {-9, -6, -3, 0, 3, 6}

This is said to be a set comprehension over the set {-3, -2, -1, 0, 1, 2}.

Set Comprehension Example 1 - Creating:

How do we create a set of the first 10 square numbers (0 inclusive)?

S={Instruction|x∈​DefininedSet​ ​∧ x
satisfies condition}

Firstly, we should investigate which set X should be drawn from. Square numbers rely
on whole numbers, so we should either use ​integers ​or ​natural ​numbers. Technically
either of these can be used, but it is better programming practise to use the most
specific set. Hence, the values will be drawn from the natural numbers.

S={Instruction|x∈​ℕ​ ​∧ x satisfies
condition}

We only want to take the first 10 square numbers (0 - 9); therefore x must be less than
or equal to 9. X should also be equal to or greater than 0, but this is a constraint given
by using natural numbers.

S={Instruction|x∈​ℕ​ ​∧ 9≥x}

www.pmt.education

Lastly, we add the instruction. All the values of x, from 0 to 9, should be multiplied by
themselves. Hence, the instruction should square the values. This is the final set
comprehension.

S={x*x|x∈​ℕ​ ​∧ 9≥x}

Empty Sets
Sets can contain 0 elements. Such sets are referred to as empty sets. The symbols for
empty sets are {} and Ø.

Compact Set Representation
Compact set representation is a space-efficient way of describing sets. This can include
using shorthand ways of describing multiple instances of a number. The logic from set
comprehension can be applied to compact set representation. The following example
has been taken from the specification.

This set contains all strings with an equal number of 0 s and 1s.
{0​n​ 1​n​ | n ≥ 1} = {01, 0011, 000111, 00001111, … }
There is no need to specify where n is drawn from - n must always be positive and
whole (natural numbers).

www.pmt.education

Set Key Words
Here are some common types of sets.

Finite sets:
Finite sets contain a finite number of items, i.e. the values can be paired with
consecutive natural numbers up to a particular number. The cardinality of a finite set
refers to the number of elements in a set.

Finite Sets Example:
Here is a set of numbers.

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

If we take the natural numbers from ​1​ to ​10​, we can pair up each number from the set
with a natural number.

{(​1​,2),(​2​,4),(​3​,6),(​4​,8),(​5​,10),(​6​,12),(​7​,14),(​8​,16),(​9​,18),(​10​,
20)}

Therefore this set is finite. It has a cardinality of 10.

Infinite Sets:
Infinite sets are the opposite of finite sets, in that they contain an infinite number of
items, e.g. the set of integers. Infinite sets can be divided in two: countable and non
-countable sets.

Countably Infinite Sets:
The items in a countably infinite set can be counted off by the natural numbers.
Countably infinite sets include the integers and the natural numbers.

Countably Infinite Sets Example:
The set of numbers evenly divisible by three is infinite.

Each element can be paired with a natural number.

Therefore it is countably infinite. Instinctively, you may think that there are three times

www.pmt.education

as many natural numbers than numbers evenly divisible by three. This misconception
can cause problems in exams - any infinity which can be counted off by natural
numbers are the same size as one another. So there are the same amount of multiples
of three as there are of one.

Non-Countable Sets:
Non-countable sets contain a larger infinity of numbers - they cannot be paired with
natural numbers. Non-countable sets include the real numbers.

Subset
Set A is a subset of Set B if it only contains items from Set B. The symbol for a subset is
⊆. So if A is a subset of B, the notation would be A ⊆ B, e.g. {2,4,6} ⊆ {1,2,3,4,5,6}.

If set A was the same as set B, they would be subsets of each other e.g. {A,B,C} ⊆
{A,B,C}.

Proper Subsets
Set A is a proper subset of set B if it only contains items
from set B, but not all of them. Set A cannot be equal to set
B to be a proper subset.

www.pmt.education

Countable Sets
Countable sets have the same cardinality as some subset of the natural numbers.
Countable sets include finite sets and countably infinite sets.

Membership
If an item is in a set, then ​∈ is used to denote this. E.g 3 ∈ R.
If an item is not contained in a set, then ∉ can be used to show this. E.g. -3.2 ∉ N

Set Operations
New sets can be constructed from other sets by using the following set operations.

Union
A new set can be created through the union of two other sets. The symbol signifying a
union is ​∪​. The values from each set are taken and added to the new set. Where a
value appears in each set, it will only appear once in the new set.

www.pmt.education

Union Example:
Set A: {2,4,6,8}
Set B: {1,2,3,4,5,6}

Set A ​∪​ Set B
>> {1,2,3,4,5,6,8}

Set A ​∪​ Set B is the same as Set B ​∪​ Set A

Intersection
If a new set is constructed from the intersection of set A and set B, then it will only
include the values in both sets. The symbol for intersection is ​∩.

Intersection Example
Set A: {2,4,6,8}
Set B: {1,2,3,4,5,6}

www.pmt.education

Set A ​∩ Set B
>> {2,4,6}

Set A ​∩ ​Set B is the same as Set B ​∩​ Set A

Difference
A set created by set difference will only contain items exclusive to one set. The set
difference symbol is \ or -.

A\B = {x : x ∈ A and x ∉ B}.

Difference Example a
Set A: {2,4,6,8}
Set B: {1,2,3,4,5,6}

A\B
>> {8}

A - B
>> {8}

Difference Example b
Set A: {2,4,6,8}
Set B: {1,2,3,4,5,6}

www.pmt.education

B\A
>> {1,3,5}

B - A
>> {1,3,5}

Regular Expressions
Regular expressions are shorthand ways of describing sets. There are several
metacharacters used in regular expressions. The ones below are the only ones you
have to know. In another metacharacter appears in an exam it will be explained in the
question.

 Metacharacter Description Example

* 0 or more repetitions The set described by ab* is {a, ab,
abb, abbb …}

+ 1 or more repetitions The set described by c*d is {cd, ccd,
cccd…}

? Previous character optional The set described by Colou?r is
{Colour, Color}

| Alternative/ or The set described by e|f is {e, f}

() Used to group regular
expressions

The set described by (ab)|(cd)e is
{abe, cde}

Regular Expressions Example 1
What set does the notation the following notation describe?

www.pmt.education

First we need to know what letters the symbols are referring to. The symbols always
refer to the letter/brackets immediately preceding it. Let’s look at the plus symbol.

Before plus is a. The plus means one or more repetitions; the set denoted by a+ is
{a,aa,aaa…}. Now we look at the second symbol.

Immediately before the asterisk is a bracket, so the asterisk is referring to bc. The
asterisk means that there should be 0 or more repetitions of bc. The set (bc)* is
{ ,bc,bcbc,bcbcbc}.

Here are some items contained in the set a+(bc)*
a
aa
aaa
abc
abcbcbc
aaaaaaaaaabcbcbcbcbcbcbcbcbcbcbcbcbcbc

Regular Expression and FSMs
For each set denoted by a regular expression, there is an equivalent FSM.

Regular Expression and FSMs Example 1:
An FSM recognises the alphabet a, b, c and d. What is the equivalent regular
expression to the following FSM?

www.pmt.education

The first thing to notice is S​3​.

It is not a stop state, but once at S ​3​ there is no way to leave. This means the input
should be rejected.

The initial state is S​0​. To avoid S​3​, an a or b must be entered. The notation for a or b is
the following:

This is the first part of the regular expression. S1 is a valid stop state, so a must be an
acceptable input and b must be an acceptable input. Now we should look at S​1​.

www.pmt.education

To avoid going to the reject state, either a c must be entered or nothing should be
entered. By entering a c, you will be sent to S​2​.

At S​2​, you must enter d to avoid the reject state. In other words, after entering a or b,
you can enter cd as many times as you like, with a minimum of 0 times. This can be
written as:

The full regular expression is below.

www.pmt.education

Regular Expression and FSMs Example 2:
How do you turn the following regular expression into an FSM?

The finite state machine only needs to recognise an alphabet of a b c and d. The first
symbol is the plus which refers to abc. This means that abc must appear at least once.

The first letter inputted needs to be ​a​.

If an a isn’t entered, the input should be rejected. S​2​ can be the reject state.

After a, a b must be entered, anything else should be rejected.

www.pmt.education

After b, c should be entered and anything else should be rejected. As the * and ? are
optional, the next node is a valid stop state.

From S​4​ you need the option to repeat abc as many times as you want. This can be
added like this:

www.pmt.education

