
 
 
 
 
 
 

AQA Computer Science A-Level 
4.4.2 Regular languages 

Advanced Notes  
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Specification: 
 
4.4.2.1 Finite state machines (FSMs) with and without output 

Be able to draw and interpret simple state transition diagrams and 
state transition tables for FSMs with no output and with output (Mealy 
machines only). 

 
4.4.2.2 Maths for regular expressions  

Be familiar with the concept of a set and the following notations for 
specifying a set: A = {1, 2, 3, 4, 5 } or set comprehension: A = {x | x ∈ ℕ ∧ 
x ≥ 1 } where A is the set consisting of those objects x such that x ∈ ℕ and 
x ≥ 1 is true.  

Know that the empty set, {}, is the set with no elements.  
Know that an alternative symbol for the empty set is Ø.  
A set is an unordered collection of values in which each value occurs 

at most once.  
Several languages support set construction. In Python, for example, 

use of curly braces constructs a set: {1, 2, 3 }. | means such that. x ∈ ℕ 
means that x is a member of the set ℕ consisting of the natural numbers, ie 
{0, 1, 2, 3, 4, … }.  

The symbol ∧ means AND. The term ∧ x > = 1 means AND x is 
greater than or equal to 1. In Python, {2 ∗ x for x in {1, 2, 3 }} constructs {2, 
4, 6 }. This is said to be a set comprehension over the set {1, 2, 3 } . 

Be familiar with the compact representation of a set, for example, the 
set {0n 1n | n ≥ 1}. This set contains all strings with an equal number of 0 s 
and 1s. For example, {0n 1n | n ≥ 1} = {01, 0011, 000111, 00001111, … } 

Be familiar with the concept of:  
• finite sets  
• infinite sets  
• countably infinite sets  
• cardinality of a finite set  
• Cartesian product of sets.  
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A finite set is one whose elements can be counted off by natural 
numbers up to a particular number, for example as: 1st element, 2nd 
element, …, 20th (and final) element. The set of natural numbers, ℕ and the 
set of real numbers, ℝ are examples of infinite sets.  

A countably infinite set is one that can be counted off by the natural 
numbers. The set of real numbers is not countable.  

The cardinality of a finite set is the number of elements in a set. 
Cartesian product of two sets, X and Y, written X x Y and read 'X 

cross Y', is the set of all ordered pairs (a, b) where a is a member of A and 
b is a member of B. 

 
Be familiar with the meaning of the term:  

• subset. {0, 1 , 2 } ⊆ {0, 1, 2, 3 } where ⊆ means subset of. ⊆ 
includes both ⊂ and =, for example {0, 1, 2, 3 } ⊆ {0, 1, 2, 3 } is also 
true, because {0, 1, 2, 3 } = {0, 1, 2, 3 }.  

• proper subset. {0, 1 , 2 } ⊂ ℕ where ⊂ means proper subset 
of, that is ℕ contains everything in {0, 1, 2 } but there is at least one 
element in ℕ that is not in {0, 1, 2 }.  

• countable set. A countable set is a set with the same 
cardinality (number of elements) as some subset of natural numbers. 
 
Be familiar with the set operations:  

• membership  
• union  
• intersection  
• difference.  

The set difference A\B (or alternatively A-B) is defined by A\B = {x : x 
∈ A and x ∉ B}. 

 
 

4.4.2.3 Regular expressions 
Know that a regular expression is simply a way of describing a set 

and that regular expressions allow particular types of languages to be 
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described in a convenient shorthand notation. For example, the regular 
expression a(a|b)* generates the set of strings {a, aa, ab, aaa, aab, aba, 
…}. 
 

Be able to form and use simple regular expressions for string 
manipulation and matching. Students should be familiar with the 
metacharacters: 

• * (0 or more repetitions)  
• + (1 or more repetitions)  
• ? (0 or 1 repetitions, ie optional)  
• | (alternation, ie or)  
• ( ) to group regular expressions. Any other metacharacters 

used in an exam question will be explained as part of the question. 
 

Be able to describe the relationship between regular expressions and 
FSMs. Regular expressions and FSMs are equivalent ways of defining a 
regular language. 
 

Be able to write a regular expression to recognise the same language 
as a given FSM and vice versa. A student's ability to write very simple 
regular expressions and FSMs will be assessed. 
 
4.4.2.4 Regular language 

Know that a language is called regular if it can be represented by a 
regular expression. Also, a regular language is any language that a FSM 
will accept.  
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Finite State Machines 
Finite state machines ​ can have an output.  
 
Here is a basic finite state machine. 
 

 
Let’s add some inputs 
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If a 1 is inputted at S0, the state changes to S1. If a 0 is inputted at S1, the state 
changes to S2 and so forth.  
We could also add some outputs. These are separated from the inputs with a |. 

 
An example input might be 1000101.  
 
The start state (indicated by the arrow) is S​0​, and our first input is a 1. 

State S​0       

Input 1 0 0 0 1 0 1 

Output        
 

 
 
An “a” is outputted, and the state changes to S​1​.The next input is 0. 
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State S​0 S​1      

Input 1 0 0 0 1 0 1 

Output a       
 

 
A “b” is outputted. The state changes from S1 to S2. The next input is 0. 

State S​0 S​1 S​2     

Input 1 0 0 0 1 0 1 

Output a b      
 

 
A “b” is outputted. The state stays as S2. The next input is 0. 

State S​0 S​1 S​2 S​2    

Input 1 0 0 0 1 0 1 

Output a b b     
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A “b” is outputted. The state stays as S2. The next input is 1. 

State S​0 S​1 S​2 S​2 S​2   

Input 1 0 0 0 1 0 1 

Output a b b b    
 

 
An “a” is outputted. The state changes from S2 to S3. The next input is 0. 

State S​0 S​1 S​2 S​2 S​2 S​3  

Input 1 0 0 0 1 0 1 

Output a b b b a   
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A “b” is outputted. The state stays as S3. The next input is 1. 

State S​0 S​1 S​2 S​2 S​2 S​3 S​3 

Input 1 0 0 0 1 0 1 

Output a b b b a b  
 

 
An “a” is outputted. The state stays as S3. There are no more inputs. 

State S​0 S​1 S​2 S​2 S​2 S​3 S​3 

Input 1 0 0 0 1 0 1 

Output a b b b a b a 
 
The input 1000101 has landed on a valid stop state and produced the output “abbbaba”. 
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Sets 
A set is an abstract data type which contains unordered unique values. Many languages 
support set construction, including Python. ​Sets can contain other sets​. Below are 
examples of common set notation. 
 
Set Example 1: 
F is a set of farm animals. This is the notation for the set. 
 
F: {“Pig”, “Goat”, “Cow”, “Sheep”} 
 
Set Example 2: 
H is a set of heights of 10 year old children. This is the notation for the set. 
 
H: {143.1, 142.8, 145.0, 143.5} 
 
Set Example 3: 
A is the set of school subjects Charlie has on Monday. 
A: {“Eng”, “Mat”, “MFL”} 
B is the set of school subjects Charlie has on Wednesday. 
B: {“Geo”, “Art”, “His”} 
C is the set of school subjects Charlie has on Friday. 
C: {“D.T”, “P.E.”, “Sci”} 
 
D is the set of the subjects Charlie has on Monday, Wednesday and Friday. 
D: {(“Eng”, “Mat”, “MFL”), (“Geo”, “Art”, “His”), (“D.T”, “P.E.”, “Sci”)} 
 
Python Set Example 1: 
Using curly brackets in Python constructs a set. E.g. to construct a set containing 1, 2 
and 3, the following code would be implemented: 
 
{1, 2, 3} 
 

Set Comprehension 
Set comprehension is a different way of creating a set; rather than specifying all of the 
items individually, we can select what we want from a more general set. Below is the set 
comprehension for all the positive integers (not including 0). 
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Set Comprehension Example 1 - Understanding: 
 
What set would the following code produce? 
 

S={x*3|x∈​ℤ ​∧ x≥-3 ∧ x<3} 
 
 
The first thing to note is what general set the numbers are being drawn from.  
 

S={x*3|​x∈​ℤ​ ​∧ x≥-3 ∧ x<3} 
 
The values are being drawn from Z, which stands for the set of integers. This includes 
all the positive and negative whole numbers and zero. Next, we look at the first 
condition. 
 

S={x*3|x∈​ℤ​ ​∧ ​x≥-3​ ∧ x<3} 
 
We are only taking integers from Z which are greater than or equal to -3. In other words, 
we are taking -3, -2, -1, 0, 1, 2, 3, 4… to infinity. Now we look at the second condition. 
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S={x*3|x∈​ℤ​ ​∧ x≥-3 ∧ ​x<3​} 
 
This limitation means we are only taking integers below 3. By applying both of the 
conditions, we can say we are only looking at the integers between -3 and 2; they are 
-3, -2, -1, 0, 1 and 2. Finally, we look at the instructions for these numbers. 
 
S={​x*3​|x∈​ℤ​ ​∧ x≥-3 ∧ x<3} 
 
Each number specified should now be multiplied by 3, before being added to the set. 
This will be the result. 
 
S = {-9, -6, -3, 0, 3, 6} 
 
This is said to be a set comprehension over the set {-3, -2, -1, 0, 1, 2}. 
 
Set Comprehension Example 1 - Creating: 
 
How do we create a set of the first 10 square numbers (0 inclusive)?  
 

S={Instruction|x∈​DefininedSet​ ​∧ x 
satisfies condition} 
 
Firstly, we should investigate which set X should be drawn from. Square numbers rely 
on whole numbers, so we should either use ​integers ​or ​natural ​numbers. Technically 
either of these can be used, but it is better programming practise to use the most 
specific set. Hence, the values will be drawn from the natural numbers. 
 
S={Instruction|x∈​ℕ​ ​∧ x satisfies 
condition} 
 
We only want to take the first 10 square numbers (0 - 9); therefore x must be less than 
or equal to 9. X should also be equal to or greater than 0, but this is a constraint given 
by using natural numbers. 
 
S={Instruction|x∈​ℕ​ ​∧ 9≥x} 
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Lastly, we add the instruction. All the values of x, from 0 to 9, should be multiplied by 
themselves. Hence, the instruction should square the values. This is the final set 
comprehension. 
 
S={x*x|x∈​ℕ​ ​∧ 9≥x} 
 

Empty Sets 
Sets can contain 0 elements. Such sets are referred to as empty sets. The symbols for 
empty sets are {} and  Ø. 
 

Compact Set Representation 
Compact set representation is a space-efficient way of describing sets. This can include 
using shorthand ways of describing multiple instances of a number. The logic from set 
comprehension can be applied to compact set representation. The following example 
has been taken from the specification. 

 
This set contains all strings with an equal number of 0 s and 1s. 
{0​n​ 1​n​ | n ≥ 1} = {01, 0011, 000111, 00001111, … } 
There is no need to specify where n is drawn from - n must always be positive and 
whole (natural numbers).  
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Set Key Words 
Here are some common types of sets. 
 
Finite sets: 
Finite sets contain a finite number of items, i.e. the values can be paired with 
consecutive natural numbers up to a particular number. The cardinality of a finite set 
refers to the number of elements in a set. 
 
Finite Sets Example: 
Here is a set of numbers. 
 
{2, 4, 6, 8, 10, 12, 14, 16, 18, 20} 
 
If we take the natural numbers from ​1​ to ​10​, we can pair up each number from the set 
with a natural number. 
 
{(​1​,2),(​2​,4),(​3​,6),(​4​,8),(​5​,10),(​6​,12),(​7​,14),(​8​,16),(​9​,18),(​10​, 
20)} 
 
Therefore this set is finite. It has a cardinality of 10. 
 
Infinite Sets: 
Infinite sets are the opposite of finite sets, in that they contain an infinite number of 
items, e.g. the set of integers. Infinite sets can be divided in two: countable and non 
-countable sets. 
 
Countably Infinite Sets: 
The items in a countably infinite set can be counted off by the natural numbers. 
Countably infinite sets include the integers and the natural numbers. 
 
Countably Infinite Sets Example: 
The set of numbers evenly divisible by three is infinite. 

 
Each element can be paired with a natural number. 

 
Therefore it is countably infinite. Instinctively, you may think that there are three times 

www.pmt.education



as many natural numbers than numbers evenly divisible by three. This misconception 
can cause problems in exams - any infinity which can be counted off by natural 
numbers are the same size as one another. So there are the same amount of multiples 
of three as there are of one. 
 
Non-Countable Sets: 
Non-countable sets contain a larger infinity of numbers - they cannot be paired with 
natural numbers. Non-countable sets include the real numbers.  
 
Subset 
Set A is a subset of Set B if it only contains items from Set B. The symbol for a subset is 
⊆. So if A is a subset of B, the notation would be A ⊆ B, e.g. {2,4,6} ⊆ {1,2,3,4,5,6}. 

 
If set A was the same as set B, they would be subsets of each other e.g. {A,B,C} ⊆ 
{A,B,C}. 
 
Proper Subsets 
Set A is a proper subset of set B if it only contains items 
from set B, but not all of them. Set A cannot be equal to set 
B to be a proper subset.  
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Countable Sets 
Countable sets have the same cardinality as some subset of the natural numbers. 
Countable sets include finite sets and countably infinite sets. 
 
Membership 
If an item is in a set, then ​∈ is used to denote this. E.g 3 ∈ R. 
If an item is not contained in a set, then ∉ can be used to show this. E.g. -3.2 ∉ N 
 

Set Operations 
New sets can be constructed from other sets by using the following set operations. 

 
 
Union 
A new set can be created through the union of two other sets. The symbol signifying a 
union is ​∪​. The values from each set are taken and added to the new set. Where a 
value appears in each set, it will only appear once in the new set. 
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Union Example: 
Set A: {2,4,6,8} 
Set B: {1,2,3,4,5,6} 
 

 
 
Set A ​∪​ Set B 
>> {1,2,3,4,5,6,8} 
 
Set A ​∪​ Set B is the same as Set B ​∪​ Set A 
 
Intersection 
If a new set is constructed from the intersection of set A and set B, then it will only 
include the values in both sets. The symbol for intersection is ​∩.  
 
Intersection Example 
Set A: {2,4,6,8} 
Set B: {1,2,3,4,5,6} 
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Set A ​∩ Set B 
>> {2,4,6} 
 
Set A ​∩ ​Set B is the same as Set B ​∩​ Set A 
 
Difference 
A set created by set difference will only contain items exclusive to one set. The set 
difference symbol is \ or -. 
 
A\B = {x : x ∈ A and x ∉ B}. 
 
Difference Example a 
Set A: {2,4,6,8} 
Set B: {1,2,3,4,5,6} 
 

 
 
A\B 
>> {8} 
 
A - B 
>> {8} 
 
 
Difference Example b 
Set A: {2,4,6,8} 
Set B: {1,2,3,4,5,6} 
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B\A 
>> {1,3,5} 
 
B - A 
>> {1,3,5} 
 

Regular Expressions 
Regular expressions are shorthand ways of describing sets. There are several 
metacharacters used in regular expressions. The ones below are the only ones you 
have to know. In another metacharacter appears in an exam it will be explained in the 
question. 
 

 Metacharacter Description Example 

* 0 or more repetitions The set described by ab* is {a, ab, 
abb, abbb …} 

+ 1 or more repetitions The set described by c*d is {cd, ccd, 
cccd…} 

? Previous character optional The set described by Colou?r is 
{Colour, Color} 

| Alternative/ or The set described by e|f is {e, f} 

() Used to group regular 
expressions 

The set described by (ab)|(cd)e is 
{abe, cde} 

 
Regular Expressions Example 1 
What set does the notation the following notation describe? 

www.pmt.education



 
First we need to know what letters the symbols are referring to. The symbols always 
refer to the letter/brackets immediately preceding it. Let’s look at the plus symbol. 

 
Before plus is a. The plus means one or more repetitions; the set denoted by a+ is 
{a,aa,aaa…}. Now we look at the second symbol. 

 
Immediately before the asterisk is a bracket, so the asterisk is referring to bc. The 
asterisk means that there should be 0 or more repetitions of bc. The set (bc)* is 
{      ,bc,bcbc,bcbcbc}. 
 
Here are some items contained in the set a+(bc)* 
a 
aa 
aaa 
abc 
abcbcbc 
aaaaaaaaaabcbcbcbcbcbcbcbcbcbcbcbcbcbc 
 

Regular Expression and FSMs 
For each set denoted by a regular expression, there is an equivalent FSM. 
 
Regular Expression and FSMs Example 1: 
An FSM recognises the alphabet a, b, c and d. What is the equivalent regular 
expression to the following FSM? 
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The first thing to notice is S​3​. 

  
It is not a stop state, but once at S ​3​ there is no way to leave. This means the input 
should be rejected. 
 
The initial state is S​0​. To avoid S​3​, an a or b must be entered. The notation for a or b is 
the following: 

 
This is the first part of the regular expression. S1 is a valid stop state, so a must be an 
acceptable input and b must be an acceptable input. Now we should look at S​1​. 
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To avoid going to the reject state, either a c must be entered or nothing should be 
entered. By entering a c, you will be sent to S​2​.  

 
At S​2​, you must enter d to avoid the reject state. In other words, after entering a or b, 
you can enter cd as many times as you like, with a minimum of 0 times. This can be 
written as: 

 
The full regular expression is below. 

 
 

www.pmt.education



Regular Expression and FSMs Example 2: 
How do you turn the following regular expression into an FSM? 

 
The finite state machine only needs to recognise an alphabet of a b c and d. The first 
symbol is the plus which refers to abc. This means that abc must appear at least once.  
 
The first letter inputted needs to be ​a​. 

 
If an a isn’t entered, the input should be rejected. S​2​ can be the reject state. 

 
After a, a b must be entered, anything else should be rejected. 

 

www.pmt.education



After b, c should be entered and anything else should be rejected. As the * and ? are 
optional, the next node is a valid stop state. 

From S​4​ you need the option to repeat abc as many times as you want. This can be 
added like this: 
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